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A non-abelian Born-Infeld Lagrangian 

T Hagiwarat 
Brandeis University, Waltham, MA 02254, USA 

Received 21 April 1981 

Abstract. A Born-Weld non-polynomial Lagrangian is generalised to non-abelian SU(2) 
gauge fields. Equations of motions are solved for a few ansatze: a plane wave solution, a 
chromostatic solution and a chromomagnetostatic solution. 

1. Introduction 

In this paper a Born-Infeld non-polynomial Lagrangian is generalised to a non-abelian 
SU(2) gauge theory. Classical solutions to equations of motions are obtained for 
several ansatze. 

A Born-Infeld (BI) Lagrangian density for nonlinear but abelian electrodynamics 
was introduced by Born and Infeld in 1934 (Born 1934, Born and Infeld 1934) by 

where T,,, = (1, -1, -1, -1) is a Minkowski metric and 

a,” = 7,” - (1/M2)F,,,. (2) 

F,,, is a field strength tensor for an electromagnetic field A,: F,,, = a,A, -a&,. The 
Born-Infeld Lagrangian is one of the general non-derivative Lagrangians which only 
depend on the two algebraic Maxwell invariants XI = - t F , P ”  and X 2  = -$F,.VF*”, 
but not on derivatives such as 

The BI Lagrangian is noted amongst others for the following properties. 
(i) Geometry: the BI Lagrangian density is one of the simplest non-polynomial 

Lagrangians that is invariant under the general coordinate transformations (with vFV 
replaced by a general coordinate metric g,,,(x)), 

(ii) Causality: LBIED is the only causal spin-1 theory (Plebanski 1968) aside from 
Maxwell’s Lagrangian density L = - iF,JJ;’””. 

(iii) Energy density: the vacuup is characterised by F,,, = 0 as the energy density is 
positive semi-definite. The energy-momentum density tensor To, satisfies the local 
equal-time commutation relation (Dirac 1962, Deser and Morrison 1970), that is, the 
Born-Infeld Lagrangian can be quantised in agreement with special relativity in spite of 
its nonlinearity or derivative coupling. 

(iv) Helicity conservation: the maximally helicity changing 2N-photon interaction 
terms ( N  3 2) vanish identically in the BI Lagrangian (Duff and Isham 1980, Hagiwara 

t Work supported in part by Department of Energy under Contract DE-AC03-76ER 0320 A005. 
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1981). Namely, if one defines 

then one finds that X* are eigenvalues for (F: ),": 

X*T,~ = (F: ( 3 c )  

The Born-Infeld Lagrangian does not contain interaction terms (X? +X"; N = 
2,3,  * . . .  

(v) An intrinsic length scale and finiteness: the non-polynomial BI Lagrangian is 
characterised by its length scale 1/M. The field strength FFy is finite everywhere while it 
is singular in a Maxwell theory. It approaches Coulombic at large distances, rM >> 1. 

(vi) Relation to supersymmetry: recently Deser and Puzalowski (1980) investigated 
the condition to be satisfied for the Lagrangian given in terms of X, alone to have a 
supersymmetric extension. They found that BI Lagrangians also satisfy their condi- 
tion?. 

With these significant features in mind it is interesting to generalise the BI Lagran- 
gian towards non-abelian chromodynamics. In this paper we restrict our discussion 
within an SU(2) gauge group for simplicity. 

2. Born-Infeld Lagrangian for non-abelian chromodynamics 

We generalise a BI Lagrangian to non-abelian SU(2) chromodynamics. The simplest 
extension is given by 

LBICD = M 4 [  - {-Tr[det(~,~)]}"~ +(-Tr[det(~,,l)]}'"B/N ( 4 a )  
where 

= q F y l -  ( I / M ~ ) F ~ , , , T ~  ( 4 b )  

N = T r l = 2  (4c) 

and T~ is a matrix representation of an SU(2) generator. Though for simplicity we 
restrict our discussion within an SU(2) non-abelian chromodynamics, generalisation to 
a larger gauge group is straightforward. For SU(2), 

FFY = F&/T" is a gauge covariant field strength tensor for a non-abelian field A, = 
A , a ~ a .  

In the definition of a BI Lagrangian, det(aWv) in (g, v)-space is defined uniquely by 

a P Y s  P Y S  1 
4! det(aKU) = -E,,,,E U , ~ U ,  a, a, 

while Tr is for chromo-space specified by indices a,  b, . . .. 
t Yet there may be another reason we have to consider. Namely, it may be possible, though unlikely, to 
interpret a non-polynomial Lagrangian as an effective Lagrangian derived from a certain renormalisable 
Lagrangian with heavy particles integrated over, and to determine the dimensional parameter in terms of the 
heavy particle masses (Hagiwara 1980). 
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For an SU(2) gauge group there are nine gauge invariants (Roskies 1977) among 
which we need only the following three in order to write a non-abelian BI Lagrangian. 

a,b 

where 

Gs ab - - ~ ~ b a  = - $ [ F ~ ~ J * ~ P  + F b  F*afiu 1 
Tr(Gsab) = G. 

In terms of K, G and Gs the BI Lagrangian is given as 
1/2 

LBICD = M4[ 1 - (1 - 3 K  2 --(G2+ 1 2G:)) ] 3M8 

Note that, in an abelian case, GSab = G and 

2 
LBIED = M4[ 1 - ( 1  - 3 K  (9) 

Notice that an abelian BI Lagrangian is specified by two invariants of electrodynamics, 
K (or Xl) and G (or X2) ,  while a non-abelian Lagrangian by three. This shows a 
remarkable simplification in our definition of the Lagrangian, since one may expect that 
a non-polynomial Lagrangian is in general a function of all the nine invariants. 

There is a two-fold reason behind this significant simplification. Firstly, the colour 
neutral Lagrangian density is derived by the trace operation instead of determinant 
operations in colour space. Indeed the non-polynomial Lagrangian defined by 

LBI = M4{ - [-detab detwv(agv)11’2 + [ - d e t , . J ~ ~ ~ l ) l  (10)  1’2 1 
could be an equally possible non-abelian extension of the Born-Infeld Lagrangian, 
equation (1). All invariants appear in this definition. However, the inside of the first 
square root contains terms like (FWyFFLy or FwJ*Fu)2N for an SU(N) non-abelian gauge 
group and the Lagrangian expressed by invariants does not have a unique common 
expression independent of N. 

Secondly, the definition of determinant operation equation (6) for colour matrices is 
completely symmetrised, thus eliminating several antisymmetric invariants such as 

E abcFaW,.FbypFCp,. (11)  

The Euler-Lagrange equation is given by 

(D”P,,,)“ = ( t P S a c  + ~ E ~ ~ ~ A ~ ~ ) P ~ , ~  = 0 
where 

Pa,, = SL/SF“’”” 
Fa,, +&f-4F*b,Y[GSab +2Gsab] - - 

( 1  - 2M-4K - $MP8[G2 + 2G2])1’2’ 

P,“ is a non-abelian extension of the dielectric displacement-like tensor in the abelian 
BI nonlinear electrodynamics. For example, the dichromatic constant of the space can 
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be defined as the coefficient of F,,, which is a function of both F,, and FE,, Again it is 
trivial to show that energy density is positive semi-definite and vacuum is characterised 
by F,,, = 0. 

Equation (12) can be also written as 

(D'F,,)" = jy" 

where 

That is to say, the space chromatic-charge distribution j," ( x )  is covariantly conserved 
where the distribution is not given by external matter fields, but is determined by gauge 
fields themselves. Note that this distribution has nothing to do with the Noether 
symmetry current and the charge J ' d 3 x j O a ( x )  does not correspond to any group 
generating charge. 

3. Solutions of Born-Infeld field equations 

Several trivial solutions for a set of Euler-Lagrange equations (equation (13)) are easily 
obtained. 

(i) A plane wave solution. The ansatz for a plane wave solution propagating in a z 
direction is given by 

with &Aao - &Aa3 = 0. Then one finds 

Note that this plane-wave solution is also a solution for a non-abelian chromodynamics 
of an ordinary Maxwell theory first obtained by Coleman (1977). Note that, for the 
plane wave solution, 

(18) K = G = GSab = 0. 

Also the displacement-like tensor is nothing but the field strength tensor: 

Pa,, =Fa, , .  (19) 

It is trivial to show that D'lP,, = D"F,,, = 0.  
(ii) A chromostatic solution. 

Aai = 0 Aa0=rb(r)6a3 (20) 
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is the ansatz for a chromostatic solution. 

For Maxwellian chromodynamics the equation of motion is satisfied if + ( r )  is a 
harmonic function (Ikeda and Miyachi 1962). 

D"FF0 = sa3a24(r) = 0 

4 ( r )  - e/r  + c. 

(22a)  

(22b)  
Note that 4 ( r )  is singular at r = 0. 

Yet for a Born-Infeld chromodynamics, the equation of motion is given by 
Dl*P,,, = 0 or (DFF,,)" = j y a  where the space chromatic charge distribution j a y  is not 
zero and is a function of Fa,, themselves. We expect that 4(r )  is finite everywhere in 
the BI Lagrangian system. To see this we follow the example given by Born in his 
original paper (Born 1934). 

Because 
K = -iF,,"Fapu = i(aj4(r))* ( 2 3 ~ )  
G = GSab = 0 

one finds 
poia = - sa3aj4(r)/[1 + ~ - ~ ( a , 4 ( r ) ) ~ ] ~ "  

or in polar coordinates 

where 4' = d/dr  4(r) 

The equation of motion 

( D ~ P , ~ ) "  = -aiPaio = 0 

leads to a solution 

P," = sa3e/r2.  (28)  

(29)  4'=  ( e / r 2 ) / [ 1  + c ~ / M ~ ~ ~ I " ~  = (e/r20)[1+ (r / ro )  4 1 -1/2 

q5(r) can now be solved from equation (27)  and 

where ro = (e /M2)1 '2 ,  One can integrate equation (29)  to obtain 
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with = 2 tan-'(r/ro). Note 

f(0) = 1.8541 . . . ( 3 2 ~ )  

f(x) + f ( l l x )  =f(W (32b) 

4 (r) -+ e/r  asr+co.  (33) 
Although PIn=3 = e/r2 behaves exactly as in chromatic Maxwell equations, = 

X?=l (Fa=30i)2 = -d /d r4 ( r )  replaces Coulombic law but it approaches Coulombic as 
r + 00. It is finite everywhere and it has a discontinuity at the origin r = 0. 

(iii) A static chromomagnetic solution. The ansatz is given in polar coordinates by 

(34a) 

(34b) 

Note that this ansatz for the vector potential provides a magnetic monopole in a string 
gauge (Wu and Yang 1968, Actor 1979). Polar coordinates are chosen for simplicity 
with (?, e*, $) as unit vectors. 

Aa=1,2 Aao=O i = o  

A a = 3  - - (-g/r) tan 0/2$. 

FO: = F*aik = 0 ( 3 5 ~ )  
Fa'1.2ik =F*a=1,20i = 0 

B a = 3  =rot  A a = 3  

= (g/r2)? 
div Aa=3 - - 0.  

Equations of motion are written for Bi = $ E i j k F a = 3 j k  and Hi = $ E i j k P a = 3 j k  as 

div = g rot A = o 

L =  1-(1+B2)'" 
where 

SL B H=M4-= 
SB (1 + B2/M4)'"' 

By taking an analogy to the previous section for a chromostatic solution, one can easily 
find a magneto-Coulombic solution, 

Ba'3r = g/r2 
while 

H;=3 = (g/r i ) [ l+ (r/ro)4]-1/2 

is finite everywhere and approaches Coulombic as r + CO. Here the cut-off length is 
given by ro = (g/M2)'l2. 
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